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1. Introduction

To reveal the rule of population of the Australian sheep blowfly that obtained in exper-

imental data [1], Gurney et al [2] put forward the following Nicholson’s blowflies model
N'(t) = —0N(t) + pN(t — 7)e N7, (1.1)

Here, N(t) is the size of the population at time ¢, p is the maximum per capita daily egg
production, % is the size at which the population reproduces at its maximum rate, J is the per

capita daily adult death rate, and 7 is the generation time. As a class of biological systems,
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Nicholson’s blowflies model and its analogous equation have attracted much attention. There
have been a large number of results about this model and its modifications. We refer the
reader to [3-9] and the references cited therein. Moreover, the main focus of Nicholson’s
blowflies model is on the scalar equation and results about patch structure of this model are
gained rarely (see e.g.[10-13] and the reference therein). On the other hand, L. Berezansky
et al [9] pointed out that a new study indicates that a linear model of density-dependent
mortality will be most accurate for populations at low densities and marine ecologists are
currently in the process of constructing new fishery models with nonlinear density-dependent
mortality rates. Consequently, B. Liu and S. Gong [14] and Liu [15] presented extensive
results on the permanence of the following Nicholson’s blowflies model with a nonlinear

density-dependent mortality term
N'(t) = =D(N(t)) + PN(t — 7)e N7 (1.2)

where P is a positive constant and function D might have one of the following forms: D(N) =
A“;—i\[b or D(N) = a — be~" with positive constants a,b > 0.

However, to the best of our knowledge, there have been few publications concerned with
the permanence for Nicholson-type delay system with patch structure and nonlinear density-
dependent mortality terms. Motivated by this, the main purpose of this paper is to give the
conditions to guarantee the permanence for the following Nicholson-type delay system with

patch structure and nonlinear density-dependent mortality terms:

Nj(t) = —Di(t, Ni(t)) + ﬁi Dm@AMﬂ%+i}%@ﬂW@—nﬂﬂkgmwmaﬂ”w%(L$
j=1

=15
where
aij ()N _N
Dij(ta N) - m or Dz‘j(t,N) = aij(t) — bij(t)e s

a;j, bij, Cik, Yir, + R — (0,400) are all continuous functions bounded above and below by pos-
itive constants, and 7;(t) > 0 are bounded continuous functions, r; = frgl?%(l{supte rTij(t)} >
0,and i,j =1,2---,n, k=1,2--- 1. Furthermore, in the case D;;(t,N) = a;;(t) —b;;(t)e ",
we assume that a;;(t) > b;;(t) for t € R and i,j = 1,2---,n, which show the biological
significance of the mortality terms.

For convenience, we introduce some notations. Throughout this paper, given a bounded

continuous function g defined on R, let g™ and g~ be defined as

~ = inf g(t T = t).
g ;gRg(),g fglgg()
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Let R™(R") be the set of all (nonnegative) real vectors, we will use z = (z1,...,z,)’ € R"
to denote a column vector, in which the symbol ()7 denotes the transpose of a vector. we
let |z| denote the absolute-value vector given by |z| = (|z1,...,|z,])T and define ||z|| =
maxj<;<n |z;|. Denote C = H C([-r;,0],RY) and Cy = H C([ ri, 0], R}r) as Banach
space equipped with the supremum norm defined by ||p|| = sup 1max lpi(t)| for all p(t) =
(o1(t), ..., on()T € C (or € Cy). If z4(t) is defined on [;0 — 74, v) with to,v € R! and
i = 1,...,n, then we define x; € C as xy = (x},...27)T where () = z;(t + 0) for all
0el[-ri,0landi=1,...,n

The initial conditions associated with system (1.3) are of the form:
Nig =0, o= (p1,-.,00)T €Cy and ¢;(0) >0,i=1,...,n. (1.4)

We write Ny(to,¢)(N(t;to,¢)) for a solution of the initial value problem (1.3) and (1.4) .
Also, let [tg,n(¢)) be the maximal right-interval of existence of Ny(tg, ¥).

Definition 1.1. The system (1.3) with initial conditions (1.4) is said to be permanent,
if there are positive constants k; and K; such that

ki < lgglj&fNi(t; to, p) < lirili&PNz(t; to, o) < Kj, i =1,2---,n.

The remaining part of this paper is organized as follows. In sections 2 and 3, we shall
derive new sufficient conditions for checking the permanence of model (1.3). In Section 4,
we shall give some examples and remarks to illustrate our results obtained in the previous

sections.

2. Permanence of Nicholson-type delay systems with

a; N /.
Dl’j(tvN)_bJ(gi-N(zj 1,2,'“,71)

Theorem 2.1. Assume that the following conditions are satisfied

n n n
lglzlgn{a”} > Z Z a;; + Z Z (2.1)
i=1j=1,j7#i i=1j= 1€
su wilt) 4 19 2.2
b n ; 5 4y )

PR () ) cij(t)

Jj=

Then, the model (1.3) and (1.4) with D;;(t,N) = %( ,7=1,2,--- n) is permanent.
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Proof. Set N(t) = N(t;to, ) for all ¢ € [tg,n(¢)). In view of ¢ € C, using Theorem
5.2.1 in [16, p.81], we have Ny(to, ) € C4 for all t € [to,n(¢)). From(1.3) and the fact that
ai (N~ “"(t)N for all t € R, N > 0, we obtain

bii(t)+N —  byu(t)
N/(t) = —Dy(t,N;(t))+ Z Dij(t, N;(t)) + ch it — 75 (t))e Vi ONit=mii (1)
J=1j#i
a; (t)N; (t o (VN (£ .
> E) )(t) Z Cz] — Tij (t))e g (N8 Tw(t))a 1= 17 27 RN (2'3)
1 ] 1

In view of N;(to) = ¢i(0) > 0, integrating (2.3) from to to t, we get

toag;(u)

Nl(t) Z 6 tg b ’L’L(u)d N(to) +

toai(w) “) S a“(v

67 to ’L’L(u) / bi; 'U) CZ S —Ti 6_’%]‘ (S)Ni(S_Tij (S))ds
[ Z i(5)

> 0’ for all t e [th’r}(SD))’ 1= 1’2) 2

Let y(t) = zn: zi(t), where t € [to — r,1(p)), 7 = 1r<mn {r;}. Notice that maémve e %7 we
=1 i<n
have
/ = azz(t)Nz t “ " t (t)
Jo) = -3 Nl _aON;(0)
iizl bii(t) + Ni ; 127&‘ bij(t) + N;(t)
n l
>3 e (DNt — 7ij(t))e 1o ON (s (®)
i=1j=1
E aii(t)NZ(t) n n n 1l c (t)
< -we n > D e+ o
Z blz(t) + Z Nl(t) =1 ]:17]7&@ =1 ]:1 671]( )
=1 i=1
Z a/Z_ZNZ(t) n n n
S _nlzl - +Zza$+zz zg
Sbi(t) + 3 Ni(t)  i=1j=1,#i =11 Vg
i=1 i=1
i fa;; }y(t)  n o w no1
< n i
S “n + Z Z aij + Z Z e
> bu(t) + y(t) i=1j=1,j%#i i=1j=1 Vi

For each t € [tg — 7, 1(p)), we define

M(t) = max{{: & < t,y(§) = max_y(s)}.

to—r<s<t
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We now claim that y(¢) is bounded on [tg, 7(¢)). In the contrary case, observe that M(t) —

n(p) as t — n(p), we get

lim y(M(t)) = +oc.
t=n(p)

But y(M(t)) = L y(s), and so y'(M(t)) > 0 for all M(t) > ty. Thus,
0 < y(M(1)
min {a;; }y(M(t)) n

< - +2. 2 a$+ZZ

bu(M(t)) + y(M(t)) i=1 j=1,ji i=1j= 16

, for all M(t) > to,

.M:

1

(2

which yields

min {az }y(M(t)) n

1<i<n ili U+ZZ

, for all M(t) > to. (2.4)

n
Zlbn'(M(t)) +y(M(t)) i=1j=1°¢
1=
Therefore, from the continuities and boundedness of the functions b;;(t), i, = 1,2,---,n, we
can select a sequence {7T},},/>9 such that
Oim To=n(p) lm y(M(T) = 4oo, lm by(M(T) =ty (25)

and

min {az }y(M(Ty))

n n n
I=i=n <3 a++zz e (2.6)
— ij

Z bii(M(T),)) +y(M(T,))  i=1j=1,j#i i=1j

Letting n — 400, (2.5) and (2.6) imply that
n n n
ij
EEALTEDD Z U+sz :
i=1j=1,5 i=17=1 ij

which contradicts with (2.1). This implies that y(¢) is bounded on [tg,7(¢)) . From Theorem
2.3.1 in [17], we easily obtain n(p) = +o00.Thus, every solution N (¢;to, ) of (1.3) and (1.4)

is positive and bounded on [tg, +00). So there exist positive constants K;, such that

0<N;(t) <K;, forall t>ty ,i=1,2,---,n

)

It follows that
hm supN()<KZ~, i=1,2,--,n. (2.7)
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We next prove that there exist positive constants k;, such that

lim inf N;(¢) > ki, i=1,2,---,n. (2.8)

t—+00

For i =1,2,---,n, from (1.3) we have

aiitNit L PV (t—Ti s
Nj(t) > —72) (t)( ) + i ()N (t — 7(t))e i ONalim (0 (2.9)
(23 ]:1

where t € [tg, +00). Suppose that (2.8) does not hold, that is,

lim N;(6;(t)) = 0,i=1,2,---,n. (2.10)

t——+o0
However, N;(0;(t)) = trgiritNi(s), and so N/(6;(t)) < 0, where 0;(t) > to,i = 1,2,---,n.
058>
According to (2.9), we have

0

\%

=
—~
S
—~

~
~—

2} ) ‘ + Z ¢ij (05 (1)) N3 (05(t) — 745 (05()))e ™ (O ()N (0 (1) =75 (0:(1)))

which is equivalent to

bii(0:(t))

where 0;(t) > tg,i = 1,2,---,n. This, together with (2.10), implies that

a;; (0:(1)) l o (0 (EVVIN (05 (£)— (0 (1
NG (0:(8)) > D i (03 (4)) N (05() — 735 (05 (2)))e 7 COINeGilt)=mis (0:0)) (9 11)
i=1

lim  N;(0;(t) — TZ](QZ(t))) =0,i=12,---.,n (2.12)
Now we select a sequence {t,}> such that

0:i(tn) > to, Jim t, = oo, lim N;(0:(tn)) = 0, Jm aii(0i(tn)) = a;

(2.13)
Jm bi(0i(tn)) = b5, lim e (0itn)) = ¢y, Hm i (0i(ta)) = 7,

EJQTDE, 2012 No. 73, p. 6



where i =1,2,---,n,57 =1,2,---,1. Thus, we obtain

l
Z“(al( Z Ye i (Oi(tn)) N (O (tn) =735 (0: (tn))) | (2.14)
where i = 1,2,---,n. Letting n — 400, from (2.12)-(2.14) we know that
sup aiil(t) > lim a”w;(t")) = alii > 1,
ha(t) 3 (1) bis(0i(tn)) X2 €ii (Bilta)) Vi 2 €
j= j= j=

which contradicts with (2.2). Hence, inequality of (2.8) holds. Combining (2.7) and (2.8) the

whole proof of Theorem 2.1 is complete.

3. Permanence of Nicholson-type delay systems with
DZ](ta N) = a2j<t) - bl‘]<t)€_N<Z7'] = 17 27 SR n)

Theorem 3.1. Assume that

n
af —b; < Y (aj—bf), i=1,2--n, (3.1)
j=1,j#i
n +
Z al]+z Z] <au7 i:1,27---,n. (32)
j=1i#i =1 i

Then, the model (1.3) and (1.4) with D;;(t, N) = a;;(t) — bjj(t)e N (i,j = 1,2,---,n) is
permanent.

Proof. Let N(t) = N(t;to, ), we first claim that
N;(t) > 0 for all t € [to,n(p)),i =1,2,---,n. (3.3)
Contrarily, it must occur that there exist t* € [to,n(yp)) and k € {1,2,---,n} such that
No(t) =0, Ni(t)>0 forall telfto,t*),i=1,2,-n

Then, we have

0 > Nt
n
= —Dpp(t", Ni(t*)) + Z Dy;(t*, N +ch] VN (" — 75 (%)) e Vs (N =75 (7))
J=1,j#k
n
> —apk(t) F bt + D ag(tY) - Z brj (t*)
J=1j#k j=1,j#k
n
> —af byt Y ag - Z b,
J=1j#k J=1j#k
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It follows that a}f, — by, > i (ag; — b;:]) which contradicts with inequality of (3.1). This
=1k
implies that (3.3) holds. For all ¢ € [to — 7i,7(p)), we define

m;(t) = max{{: & <t N;(§) = to—r%aé)igtNi(s)}’ i=1,2,-,n.

We now show that N;(¢) are bounded on [tg,n(¢)),s = 1,2,---,n. In the contrary case, it
exists k € {1,2,---,n} and observe that my(t) — n(y) as t — n(p), we get

lim  Ni(mg(t)) = +oo. (3.4)
t=n(p))
But Ng(mg(t)) = ,max Ny (s), and so Nj.(my(t)) > 0 for all my(t) > to. Thus,
0—rE<s<
0 < Np(mp(t))
n l
1
< —apr(mi(t) + bee(me () e MO 1N a (mg () + Y el —— (3.5)
j=1,j#k =1 “Vkj
Letting t — n(p), (3.5) implies that
n l C;r'
) azﬁﬁze = >y
j=Li#k =1 Tkj

which contradicts with the inequality of (3.2). This shows that N;(t) are positive and bounded
forall t € [to,n(¢)), i =1,2,---,n. From Theorem 2.3.1 in [17], we easily obtain n(y) = +o0.

So there exist positive constants L; such that
0< Nl(t) <Lji=12--- n.

It follows that
lim sup N;(t) < L;,i=1,2,---,n. (3.6)
t——+o00
In what follows, we prove that there exists a positive constant I; such that
lim lanZ(t) > li7 1= 1,2,---,n (37)
t——+o00

Assume that (3.7) does not hold, then it exists k € {1,2,---,n}, such that
tlg_noo inf Ny (t) = 0.
For each t > tg, we define

w(t) = max{{ : £ <t,Ni(¢) = min Ni(s)}.

to<s<t
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Observe that w(t) — +oo as t — 400 and

lim Ng(w(t)) =0. (3.8)

t—+00

However, Ni(w(t)) = min N(s), and so N} (w(t)) <0, where w(t) > tp. Then

to<s<t
0 > Np(w(®)
> —app(w(t) + bp(w()e V) 1N (g (w(t)) — by (w(t))e N @)
J=1j#k
> —ape(w(t) + bre(w(®)e” M 1N (an — b, (3.9)
J=Li#k
Letting t — +o00, (3.9) implies that
al = b= D (ag = bly),
i=Li#k

which contradicts with the inequality of (3.1). This ends the proof of Theorem 3.1.
4. Some examples

In this section we present some examples to illustrate our results.
Example 4.1. Consider the following Nicholson-type delay system with patch structure

and nonlinear density-dependent mortality terms:

/ _ (13+] cos v/3t|) N1 (¢) (14| sin 2¢|) N2 () (1+] cos 2t|) N3(t)
N®) = — S avaiim@ T 3 cosBItN>@) T At sm 3N ()

+(1 4 cos? t) Ny (t — 2| sin t|)e~ N1 (=2l sint])
+(1 4 sin® t) Ny (t — 2| cos t])e~4N1(t=2 cost])

 (44]sinVBt)Na() | (1|cos2)N1(t) |, (14]sin2¢))N5(t)
Né(t) - = 6+ cos \/§t\+N22(t) + 3+\sm3t\+N11( t) + 4+|cos3t|+N§,(t)
+(1 + sin? t) Ny (t — 2| cos t|)e~2N2(t=2| cost]) (4.1)
+(1 + cos? t) No(t — 2| sin t|)e—2N2(t=2|sint])
_ (15+| sin v/5¢]) N3 (t) (14| cos 3t|) N1 (t) (14| sin 3¢|) N2 (t)
Né(t) = 6+|cos \/étHN;(t) + 3+\sin2t\+N11(t) + 4+|cos2t|+N§(t)

+(1 + sin? V/2t) N3(t — 2| cos 2t|) e~ 6Ns(¢=2] cos 2t])
+(1 + cos? V/2t) N3(t — 2| sin 3t|)e~6Na (=2l sin3t])

Obviously, a;; = 13, a9 = 14, a33 = 15, a;; =2,(i,j =1,2,3,1 # j), c;; =2,(=123,j =
1,2), 715 =475, = 5,73, = 6, (1 = 1,2),r; = 2,( = 1,2,3). So
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32
13= mln{a“}>z Z a”—i-zz ﬁa

1=1j=1,j7#1 zljl

and

max {sup ——————} = max{l—s, 6 §} =— <1

SR 1) 3 e () o
j=1
It follows that the Nicholson’s blowflies model with patch structure and nonlinear density-
dependent mortality terms (4.1) satisfies all the conditions in Theorem 2.1. Hence, from
Theorem 2.1, the system (4.1) with initial conditions (1.4) is permanent.
Example 4.2. Consider the following Nicholson-type delay system with patch structure

and nonlinear density-dependent mortality terms:

Ni(t) = —(9+|cost|)+ (84 |sint|)e N1 4 (3 + [sint|) — (0.5 + | cost])e N2
+(3 4 |cost]) — (0.5 + |sint|)e ) + (1 + cos? £) Ny (t — 2| sin t|)e N1 (=2 sint])
+(1 4 sin? t) Ny (t — 2| cos t|)e~ N1 (t=2 cost])
Ni@t) = —(9+ |sint|) + (8 + |cost|)e ™21 4 (3 + | cost|) — (0.5 + |sint|)e M1 ®)
+(3 +|sint|) — (0.5 4 | cost|)e N3 4 (1 + sin® £) Ny (t — 2| cos t])e~4N2(t=2l cost))
+(1 + cos® t) No(t — 2| sin t])e~N2(t=2[sint))
Ni(t) = —(9+|sin2t|) + (8 + | cos 2t|)e N3 4 (3 4+ | cos 2t|) — (0.5 + | sin 2t])e~ N1 ()
+(3 + | sin 2t[) — (0.5 + | cos 2t|)e~N2(!)
+(1 4 sin® 2t) Ny (t — 2| cos 2t|)e~4N2(¢=2| cos 2t))
+(1 + cos? 2t) Ny (t — 2| sin 2t|)e N2 (t=2]sin2t)
(4.2)
Obviously, af = 10,a;; = 9,bj; =9,b; =8,(i = 1,2,3), aff == 4,bf; = 1.5,a;; = 3,b; =
0.5,(i,7 =1,2,3,i # j), ¢; = 2,7;; =4, (1 =1,2,3,j = 1,2)7 ri=2,(i=1,2,3). So
2=aj, — b < Z Gob) =3 i=123,
J=1,j#i
and . . ) -
8+-= > af+d) L <a;=9 i=123
€ =1 =1 ©Yij

Hence, from Theorem 3.1, the model (4.2) is permanent.
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The above two examples that satisfy the conditions of Theorem 2.1 and Theorem 3.1 re-
spectively are permanent. Next we shall give the example that does not satisfy the conditions
of Theorem 2.1 is not permanent.

Example 4.3. Consider the following Nicholson-type delay system with patch structure

and nonlinear density-dependent mortality terms:
25+| cos t|) Ny (¢ 12+ sin¢[) Na(t . _ lsin
Ni(t) = _(1+\s‘ii10ts\Jlel(()) + §3+\|cf>lsnt||J2N§((t)) + (14 cos® )Ny (¢ — [ sint|)e N (=lsint])
+(1 + sin? t) Ny (t — | cos t|)e= 4N (=l cost])

i (25+|sint)Na(t) (12+]cos e (1) AN (| cost
Na(t) = TFlcosf+Na () T 134] sin e+ (1+sinZ )Ny (0) + No(t — | cost])e4N2(t=cost])

+(1 + cos? t) No(t — | sin t])e4N2(t—[sint])

Obviously,af1:a§2:25,a =12,(i,7 =1,2,1 #j), ¢ —2 %J—4rl—1( =1,2). So

25—m1n{a”}<z Z %+ZZ —26+§,

i=1j5=1,7#1i i=17j= 1
and
(T 26
Juax {sup a“f()} == >1
T
<i<2 4cR bii(t) ‘21 cij(t)
j:

It follows that the Nicholson’s blowflies model with patch structure and nonlinear density-
dependent mortality terms (4.3) dose not satisfy the conditions of Theorem 2.1. Moreover,
we shall prove the model (4.3) is not permanent with the initial condition ¢* satisfying
©* € Cy,9f(0) >0and ||¢*]| <e,i=1,2. We write (4.3) as the following systems of delay
differential equation:

Nz,(t) - fi(taNt)v 1=1,2

where
At = TR + i + (L oo Dea(fsinde
+(1 + sin t)tpl(—’ cos t‘) —4p1(—|costl)
— bﬂtt(;?ff,;l(( )) + b?;?t()_)’f;;o) + Z Clj( )(pl(_le(t))e*“flj(t)tpl(fﬂj(t))
f2(t7 SO) = — (12_‘5_?_!;511;‘1)8?22((00)) + géij‘sfziﬂ_)zi((g)) + (1 + sin t)@Q(_’ cos t’) —4p2(—| costl)
+(1 + cos? t)py(—| sin t])e~4e2(=sint)
2
) T A + X, (Dpa(mmy (D) )
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Let N(t) = N(t;to, ") be the solution of system (4.3) with the initial condition ¢* for all
t € [to,n(¢*)). In view of ¢* € C, using Theorem 5.2.1 in [16,p.81], we have N(t,¢*) € C
for all t € [tg,n(¢*)). Now we prove that

[IN(t)|| <e forall tety,n(¢")) and n(e*) = +oc. (4.4)
In the contrary case, there are i € {1,2} and ¢; > ¢y such that
Ni(t1) =e, 0 < Nj(t) <e forall tg<t<t;, j=1,2

‘We have

a;i(t1)Ni(t1) & aij(t1)N;(t1)

0 < Nit) = ~bii(ty) + Nith) big(t1) + Nj(th)

=1,

2
T3 e ()Nt — 735() e Vel (1)
j=1

a;i(t1)Ni(t1) i aij(t1)N;(t1) 2 cij(t1) 1

< - Z
T bt +Nilt) 7L big(h) vt e
- 2 + 2 .+
a..e a;.e c 1
< - mZ oy N Y A
T bi+e ,7Z.bi Z:'yfe
J=1j#i "4 Jj=1 "3
25e 1
= - +e+ - <0,
2+e e

which is a contradiction. This implies that (4.4) holds. Let y(t) = N(t)e*, where A > 0 and
satisfying A — 223—J:: +4e* < 0. We claim that

lly(®)]| < e forall te€ [ty,+00). (4.5)
If this is not valid, there are ¢ € {1,2} and to > ¢y such that
yi(ta) =€, 0 <wy;(t) <e forall tg <t<ty, j=1,2.
We have

0 < yh(ta) = AN;(ta)eM? + M2 N/(t)
aii(tg)Ni(tg)e)‘tQ 2 aij (tz)Nj (t2)6)\t2
bii(tg) + Ni(tg) o1 bz‘j(tQ) + Nj(fg)

= )\Ni (tg)e)‘tQ —
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+ZCU ta)e /\Tw(t2) Ni(ty — 74 (tz))e)\(h—ﬂ'j(h))e—%j(t2)Ni(t2—Tij(t2))

7=1
a; t 2 a;
< de— ——H— ii(t2) + Z Z] —i—ch t2) )‘”e
blts) + e J=15#i bij 2) j=1
a;
< )\ _|_ Z] + + )\7"1
- ( b++€ Z ZC
J=Llj#i Z
23 —
= 0
( 2+ )e< )

which is a contradiction. This implies that (4.5) holds and the system (4.3) with initial
condition ¢* is not permanent but extinct.

Remark 4.1. To the best of our knowledge, few authors have considered the problems
of the permanence of Nicholson’s blowflies model with patch structure and nonlinear density-
dependent mortality terms. It is clear that all the results in [12-15] and the references therein
cannot be applicable to prove the permanence of (4.1) and (4.2). This implies that the results
of this paper are new.
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